
Automatic Derivation of Petri Net Based Distributed Specification
with Optimal Allocation of Resources

Khaled El-Fakihy Hirozumi Yamaguchiz Gregor v. Bochmanny Teruo Higashinoz

yUniversity of Ottawa
School of Information Technology and Engineering

Ottawa, Ontario K1N 6N5, CANADA
fkelfakih, bochmanng@site.uottawa.ca

zOsaka University
Graduate School of Engineering Science

Toyonaka, Osaka 560-8531, JAPAN
fh-yamagu, higashinog@ics.es.osaka-u.ac.jp

Abstract
In this paper, we present a method for the synthesis

of extended Petri net based distributed specification. Our
method finds an optimal allocation of resources (computa-
tional data) that optimizes the derived distributed specifica-
tion, based on some reasonable communication cost crite-
ria.

1 Introduction
Synthesis methods[1] have been used to derive a specifi-

cation of a distributed system (protocol specification) auto-
matically from a given specification of the service to be pro-
vided by the distributed system to its users (service specifi-
cation). The service specification is written like a program
of a centralized system, and does not contain any specifi-
cation of the message exchange between different physical
locations. However, the protocol specification contains the
specification of communications between protocol entities
(PE’s) at the different locations.

Some methods have tried to derive a protocol specifica-
tion with minimum communication costs. Especially, the
method in our previous research work [3] minimizes the
number of messages exchanged between PE’s for a given
fixed resource allocation. However, in the context of dis-
tributed applications, one also has to decide on an optimal
allocation of these resources, since the allocation signifi-
cantly affects the communication costs of the derived PE’s.

In this paper, we propose a new method to derive a pro-
tocol specification with an optimal allocation of resources
from a given service specification. The method starts by
identifying a set of rules for deriving a protocol specifica-
tion. Based on these rules, an optimal resource allocation
problem is formulated using an integer linear programming
(ILP) model. This problem is about determining an opti-
mal allocation of resources that minimizes the communica-
tion costs of the protocol specification. Our ILP model can

This work was partially funded by Communications and Information
Technology Ontario (CITO).

also treat several reasonable cost criteria that could be used
in various application areas for deriving protocol specifica-
tions.

2 Service and Protocol Specifications
We use an extended Petri net model called a Petri Net

with Registers (PNR in short) to describe both service and
protocol specifications of a distributed system.

Each transition t in PNR has a label hC(t); E(t);S(t)i,
where C(t) is a pre-condition statement (one of the firing
conditions of t), E(t) is an event expression (which repre-
sents I/O) and S(t) is a set of substitution statements (which
represents parallel updates of data values). Consider, for ex-
ample, transition t where C(t) =“i > R1”, E(t) =“G1?i”
and S(t) =“R1 R2 + i; R2 R1 + R2 + i”. i is an
input variable, which keeps an input value and its value is
referred by only the transition t. R1 and R2 are registers,
which keep assigned values until new values are assigned,
and their values may be referred and updated by all the tran-
sitions in PNR (that is, global variables). G1 is a gate, a
service access point (interaction point) between users and
the system. Note that “?” in E(t) means that E(t) is an in-
put event. A transition may fire if (a) each its input place
has one token, (b) the value of C(t) is true and (c) an input
value is given through the gate in E(t) (if E(t) is an input
event). If t fires, E(t) is executed followed by the parallel
execution of statements in S(t).
Service Specification At a highly abstracted level, a dis-
tributed system is regarded as a centralized system which
works and provides services as a single “virtual” machine.
The number of actual PE’s and communication channels
among them are hidden. The specification of the distributed
system at this level is called a service specification and de-
noted by Sspec. Actual resources of a distributed system
may be located on some physical machines, called proto-
col entities (PE’s). However, only one virtual machine is
assumed at this level.

Fig. 1(a) shows Sspec of a simple database system

R3 R4 R1 R2

G1 G2

keyword(i1)

keyword(i2)

G1?i1

Rtmp1

ID(Mb2, w)

[Rtmp1.R2<-w]

ID(Mb2, w)

[Rtmp1.i1<-i1]
ID(Mb1, w)

[Rtmp3.i1<-w]
g31?w

[R2<-retrieve(R1, Rtmp3.i1)]
τ

g13?w

g13!Mb1[Rtmp1.i1]

g32!Mg1[]

g32?w

g31!Mb2[R2]

g23?w

[Rtmp1.i2<-w]
g12?w

true

[R4<-retrieve
 (R3, Rtmp1.R2, Rtmp1.i2)]

τ
true

G1!R4
true

true

true

ID(Ma2, w)

Rtmp2 Rtmp3

g12g13 g21 g31g32g23

[Rtmp2.i2<-i2]
G2?i2

true true
g21!Mb2[Rtmp2.i2] g23!Ma2[]

τ
true

τ
true

PE1 PE2 PE3

ID(Mg1, w)

true

G1?i1
[R2<-retrieve(R1,i1)]

keyword(i1)

keyword(i2)
G2?i2
[R4<-retrieve(R3,R2,i2)]

G1!R4
[]

true

R1 R2 R3 R4

G1 G2

(a) Service Specification (b) Protocol Specification

t1

t2

t3

Figure 1. Service Specification and Protocol Specification

which has only three transitions. The system receives a
keyword (input variable i1) through gate G1, retrieves an
entry corresponding to the keyword from a database (reg-
ister R1), and stores the result to register R2 (on transition
t1). Then the system receives another keyword (input vari-
able i2) through gateG2, retrieves an entry corresponding to
the keyword and the retrieved entry (register R2) from an-
other database (register R3), and stores the result to register
R4 (on transition t2). Finally the system outputs the second
result (the value of register R4) through G1 and returns to
the initial state.
Protocol Specification A distributed system is a commu-
nication system which consists of p protocol entities PE1,
PE2, ... and PEp. We assume a duplex and reliable com-
munication channel with infinite capacity buffers at both
ends, between any pair of PEi and PEj . The PEi (PEj)
side of the communication channel is represented as gate
gij (gji). Moreover, we assume that the resources (registers
and gates) are allocated to certain PE’s of the distributed
system1. In order to implement the distributed system, we
must specify the behavior of these PE’s. A specification of
PEk is called a protocol entity specification and denoted by
Pspeck. A set of p protocol entity specifications hPspec1,
..., Pspecpi is called a protocol specification and denoted
by Pspech1;pi. We need a protocol specification to imple-
ment the distributed system.

Fig. 1(b) shows an example of Pspech1;3i, which pro-
vides the service of Fig. 1(a), based on this allocation of
resources: PE1 has the gate G1 and the registers R3 and
R4, PE2 has the gate G2, and PE3 has the registers R1 and
R2. According to the specification of Fig. 1(b), PE1 first
receives an input (input variable i1) through G1 and stores
it to Rtmp1:i1. Then it sends the value of Rtmp1:i1 to PE3

as a message2, since PE3 needs the value of i1 to change the
1We assume that each PEi has another registerRtmpi to keep received

values given through gates (inputs and message contents). Rtmpi can
contain several values. The values can be distinguished by adding the name
of the value as suffix, such as Rtmp1:R3.

2If PEi executes an output event “gij !M [Rw]”, the value of register

value of R2. PE3 receives and stores the value to Rtmp3:i1.
Then it changes the value of R2 using its own value and the
value of Rtmp3:i1, and sends a message to PE2. When
PE2 receives the message, PE2 knows that it can now check
the value of C(t2) and execute E(t2). PE2 receives an in-
put (input variable i2), stores it to Rtmp2:i2, and sends two
messages. One is to send the value of i2 to PE1 and another
is to incite PE3 to send the value of R2 to PE1. PE1 receives
these values and stores them to Rtmp1:i2 and Rtmp1:R2,
respectively. Then it changes the value of R4. Finally, PE1

outputs the value of R4 and PE1, PE2 and PE3 return to
their initial states.

3 Protocol Derivation
Our method for deriving protocol specification from a

given service specification is based on the simulation of
each transition tx = hC(tx); E(tx);S(tx)i of the service
specification by corresponding PE’s in the protocol specifi-
cation.

The principle of the method is as follows. After the ex-
ecution of all the previous transitions of tx, the PE which
has the gate in the event expression E(tx) (say PEstart(tx))
checks the value of the pre-condition statement C(tx) and
executes E(tx). Then each PE which has at least one reg-
ister whose value is changed in the substitution statements
S(tx) (say PEk) changes the values of these registers. The
values necessary for the change are sent from the PE’s
which have them. These PE’s receive notification messages
from PEstart(tx) and send their values to PEk. Using these
values, PEk then can change the values of its register(s). Af-
ter that, PEk sends notification messages to the PE’s (called
PEstart(tx � �)) which have the gates specified in E(tx � �),
where tx �� is the set of each next transitions of tx, in order
to indicate that the execution of tx is completed.

Rw located on PEi is sent to PEj and put into the buffer at PEj ’s end. M
is an identifier to distinguish several values on the same channel. PEj can
take the value identified by M from the buffer, by executing an input event
“gji?w” with a pre-condition ID(M;w). The value of ID(M;w) is true
iff the identifier in input variable w is M .

We let tx = hC(tx); E(tx);S(tx)i be a transition of Sspec.
[Action Rules]

(A1) PEu which has the gate appearing in E(tx) (denoted by
Gs) checks that

(a) the value of C(tx) is true,

(b) the execution of the previous transitions of tx has
been finished and

(c) an input has been given through Gs if E(tx) is an
input event.

Then the PE executes E(tx). PEu is denoted by
PEstart(tx).

(A2) After (A1), the PE’s which have at least one register
whose value is changed in the set of substitution state-
ments S(tx) execute the corresponding statements in
S(tx). The set of these PE’s is denoted by PEsubst(tx).

[Message Rules]

(M�1) Each PEk2PEsubst(tx) must receive at least one �-
message from some PE’s (each called PEj) in order to
know the timing and values of registers (see (M�2)) it
needs for executing its substitution statements, except
where PEk=PEstart(tx), in this case PEk already knows
the timing to start executing its substitution statements of
tx.

(M�2) If PEk2PEsubst(tx) needs the value of some register (say
Rz) in order to execute its substitution statements, then
PEk must receive Rz through a �-message if Rz is not
in PEk.

(M�3) Each PEj that sends some values of registers to
PEk2PEsubst(tx) through a �-message, knows the tim-
ing to send these values by receiving an �-message from
PEstart(tx). Note, if PEj=PEstart(tx) then PEj knows
the timing to send these values without receiving an �-
message.

(M�1) After (A1), the only PE that can send �-message to the
PE’s which need it is PEstart(tx).

(M1) Each PEm2PEstart(tx ��), where tx �� is the set of next
transitions of tx, must receive a -message from each
PEk2PEsubst(tx) after (A2), except where m = k. This
allows PEm to know that the execution of the substitution
statements of tx had been finished.

(M2) Each PEm2PEstart(tx � �) must receive at least one -
message from some PEl (where m 6= l) in order to know
that the execution of tx had been finished and/or to know
some values of registers it needs to evaluate and execute
its condition and event expression, respectively.

(M3) Each PEl that sends a -message to PEm2PEstart(tx��)
:

(a) must be in PEsubst(tx) (see (M1)), or

(b) must receive an �-message from PEstart(tx) to
know the timing to send the -message to PEm,
or

(c) it is itself PEstart(tx). In this case, PEl sends the -
message to let PEm know the timing and/or some
values of registers to start evaluating and executing
its condition and event expressions.

(M4) If PEm2PEstart(tx � �) needs the value of some register
(say Rv) in order to evaluate and/or execute its substi-
tution statements, then PEm must receive Rv through a
�-message if Rz is not in PEm.

Figure 2. Derivation Method in Detail

In Fig. 2, we present the details of our derivation method
as a set of rules which specify how PE’s execute each tran-
sition tx of Sspec. Three types of messages are exchanged
for the execution of tx. �-messages are sent by the PE that
starts the execution of tx (i.e. PEu=PEstart(tx)) to inform
those PE’s who need to send their registers’ values to other
PE’s that they can go ahead and send these values. Thus, an
�-message does not contain values of registers. �-messages
are sent in order to let each PE (say PEk) which executes
some substitution statements of tx, (i.e. PEk2PEsubst(tx))
(i) know the timing and some values of registers’ it needs
for executing these statements and (ii) inform each PE that
belongs to the set of next transitions of tx that the execution
of its substitution statements has been finished. -messages
are sent to each PEm2PEstart(tx � �), note that tx � � is the
set of each next transition of tx, to let it know the timing
and some values of registers’ it needs to start executing its
corresponding transition (i.e. start evaluating and executing
its condition and event expressions).

4 Optimal Resource Allocation
In this section, we build an Integer Linear Programming

(ILP) model that decides on an optimal allocation that mini-
mizes the number of messages exchanged between different
PE’s, then we incorporate into this model some other cost
criteria that we consider important for deriving distributed
specifications with minimum communication costs.
Integer Linear Programming Model for Protocol
Derivation with Minimum Communication Costs We in-
troduce the following 0-1 variables.
� �x

u;q
: its value is one iff an �-message is sent from

PEu=PEstart(tx) to PEq in the execution of tx; Otherwise
zero.
� �x

p;q
(x

p;q
): its value is one iff a �-message (-message)

is sent from PEp to PEq in the execution of transition tx;
Otherwise zero.
� �x

p;q
[Rw] (x

p;q
[Rw]): its value is one iff the �- (-) mes-

sage sent from PEp to PEq contains the value of registerRw;
Otherwise zero.
� ALCp[Rw] : its value is one iff register Rw is allocated to
PEp; Otherwise zero.
� PEstartx

i
: its value is one iff PEi starts the execution of

tx; Otherwise zero.
� PEsubstx

p
: its value is one iff PEp executes one or more

substitution statements of tx; Otherwise zero.
Using the above variables, we determine an optimal re-

source allocation that minimizes the number of messages
exchanged between different PE’s by minimizing the fol-
lowing objective function

Min :
X
x

 X
q

�x
u;q

+
X
p

X
q

�
�x
p;q

+ x
p;q

�!

subject to constraints (1) to (13) described below.

The following constraints are driven from to the defini-
tion of their variables. According to constraint (1), if a �-
message is sent from PEj to PEk in the execution of tx and it
contains the value Rw, then this message should have been
sent through a �-message. Moreover, in order for PEj to
send Rw, Rw should be allocated to it. The same reasoning
applies to constraint (2).

�x
j;k

+ALCj [Rw]� 2�x
j;k

[Rw] � 0 (1)

x
l;m

+ALCm[Rw]� 2x
l;m

[Rw] � 0 (2)

According to rule (A2), each PE that has a register Rw

whose value is changed in the set of substitution statements
S(tx), must be the one that executes this substitution state-
ment.

PEsubstx
k
� ALCk[Rw] � 0 (3)X

w

ALCk[Rw]� PEsubstx
k
� 0 (4)

Constraints (5), (6) and (7) correspond to rules (M�1),
(M�2) and (M�3) of Fig. 2, respectively.

X
j

�x
j;k
� PEsubstx

k
� 0 (5)

X
j

�x
j;k

[Rz] +ALCk[Rz]�ALCk[Rw] � 0 (6)

�x
u;j
� �x

j;k
� 0 (7)

Constraints (8), (9), (10) and (11) correspond to rules
(M1), (M2), (M3) and (M4), respectively.

x
k;m
� PEsubstx

k
� 0 (8)

X
l

x
l;m

+ PEsubstx
m
� 1 (9)

�x
u;l

+ PEsubstx
l
� x

l;m
� 0 (10)X

l

x
l;m

[Rv] +ALCm[Rv] � 1 (11)

Constraints (12) and (13) restrict the number of PE’s which
have registers Rw and Rtmpp, respectively. The register
Rtmp is used only in PEStartx

p
to save the input variable

used in the event expression of tx (say ix).X
p

ALCp[Rw] � 1 (12)

ALCp[Rtmpp:i
x] = 1 if p = u; Otherwise 0 (13)

Other Cost Criteria The following objective functions can
be incorporated into our ILP model to minimize the com-
munication costs in different cost criteria. Note that we let
Sz[Rw], F x and P lp[Rw] denote the size of resource Rw,

the (approximate) firing frequency of a transition tx and the
cost of placing resource Rw on PEp, respectively.
� Considering Size of Messages:

Min :
X
x

 X
q

�x
u;q

+
X
p

X
q

�x
p;q

+x
p;q

+
X
w

Sz[Rw]�
�
�x
p;q

[Rw]+
x

p;q
[Rw]

�!!

� Considering Execution Frequencies of Transitions:

Min :
X
x

F x �

 X
q

�x
u;q

+
X
p

X
q

�
�x
p;q

+ x
p;q

�!

� Considering Resource Placement Costs:

Min :
X
x

 X
q

�x
u;q

+
X
p

X
q

�
�x
p;q

+x
p;q

�!
+
X
p

X
w

P lp[Rw]

5 Conclusion
In this paper, we have proposed a Petri net based method

for deriving a protocol specification (distributed specifica-
tion) from a given service specification, with an optimal al-
location of resources that minimizes communication costs.

We have applied our synthesis method to the distributed
development of software that involves five engineers, given
in [4]. We have modeled the workflow as a service spec-
ification (34 transitions and 20 registers) and derived the
corresponding protocol specifications with minimum com-
munication costs using the different cost criteria presented
in the previous section. The specification for each PE in the
derived protocol specification will correspond to the work-
flow of one engineer. It took less than 143 seconds on PC
with Athlon 750MHz to solve those optimization problems.

Our future work is to develop a distributed environment
including our method.

References
[1] K. Saleh, “Synthesis of Communication Protocols:

an Annotated Bibliography,” ACM SIGCOMM Comp.
Comm. Review, Vol. 26, No. 5, pp. 40–59, 1996.

[2] A. Khoumsi and K. Saleh, ”Two Formal Methods for
the Synthesis of Discrete Event Systems,” Comp. Net.
and ISDN Syst., Vol. 29, No. 7, pp. 759–780, 1997.

[3] K. El-Fakih, H. Yamaguchi and G.v. Bochmann, “A
Method and a Genetic Algorithm for Deriving Pro-
tocols for Distributed Applications with Minimum
Communication Cost,” Proc. PDCS’99, 1999.

[4] Kellner, M. et al. : “ISPW-6 Software Process Exam-
ple,” Proc. 1st ICSP, pp. 176–186 (1991).

